357 Lê Hồng Phong, P.2, Q.10, TP.HCM 1900 7060 - 028 3622 8849 info@luyenthitap.edu.vn

Practice Exercises - Sequences and Series - AP Calculus Premium 2024

Practice Exercises

G6fymGZg-IzoOaGbVdkEp5i2LkTCQ4bxzWenMFZl

*A1. Which sequence converges?

gWJj5RBvwKPKU9NlEZw9_XXdKxbU-p6fse0ASGGR

*A2. If ZqrTX-8zAGNeRiRGzUuWG3cVbmPkzUVZetwQWI49, then

(A) sn diverges by oscillation
(B) sn converges to zero
(C) LqgrOxgRMiyaTYYhf0Z5g-uysZE2Tj_R0uCM4kH5
(D) sn diverges to infinity

*A3. The sequence QGtOwD5IX0iQAhYh7qS3DXIUh1BMEPwxEL3b1Vrb

(A) is unbounded
(B) converges to a number less than 1
(C) is bounded
(D) diverges to infinity

*A4. Which of the following sequences diverges?

gmRXzxAJBxSUVxU_YgUIIB9NxtiKhQPcp6SbFjKZ

*A5. The sequence {rn} converges if and only if

(A) |r| < 1
(B) |r| ≤ 1
(C) –1 < r ≤ 1
(D) 0 < r < 1

*A6. 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm is a series of constants for which WphV-CYWu4IvRk6edsahkNU3jD6nteGSaQbLhTk_. Which of the following statements is always true?

(A) 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm converges to a finite sum.
(B) 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm does not diverge to infinity.
(C) 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm is a positive series.
(D) None of statements (A), (B), or (C) are always true.

*A7. Note that h9_evIkfj8TR3nlQrI8Popq7nkRopXHS-mKHUm14.  equals

Dyb6HoCM7hKqTtZi-lI0rGVY9H9MCi5QESgrdM-5

*A8. The sum of the geometric series Fc4JsVusn-wxexmQkTzK3ZjRYXYQ5I4kPYA3kaQg is

xMUpjASP2JPXi2lCm8OjzYGOF-5eB6aDor37pS7u

*A9. Which of the following statements about series is true?
(A) If A_LG11o5K2808MYAmqNmLzDb203tfflf45ITV94t, then 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm converges.
(B) If -ClzQ6MsM9G-z2sl2GfKa0gK6RE1OgMVxv9KKlk5, then 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm diverges.
(C) If 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm diverges, then A_LG11o5K2808MYAmqNmLzDb203tfflf45ITV94t.
(D) 1AeiNpI6db7IeiSIoLCIr5GdyWcd43sBZt9enNBm converges if and only if -ClzQ6MsM9G-z2sl2GfKa0gK6RE1OgMVxv9KKlk5.

*A10. Which of the following series diverges?

VHnTvT0NCfwW5iQy8v9lHKKpBwK_POQIyjAb0m8D

*A11. Which of the following series diverges?

ZYlpDNI27JNHMG_FeqFD6NgGSV2WKKoodDowwGf8

*A12. Let J44SxVZn57WjQt_xKV-OeCUnIF1H_dLkDtLZPq-G; then S equals

hK68f_fo7udY8Nrob2lLZhmRA20ptgxNCYDdveUZ

*A13. Which of the following expansions is impossible?

(A) Z0R4rZsgZIRm_E0XQMq8JlUUBQBcVkzm3LDVc9cA in powers of x
(B) Q8ri5cN0Z0ss4lFATy41Icaqh9UZTQ1zVH7vNdjT in powers of x
(C) ln x in powers of (x – 1)
(D) tan x in powers of ZYGkh-wK7ni8a6vDrOJl0r3ThKC8WLtxZErFhAGt

*A14. The series zGwvCarpwgcxvtcxXJjWHTPXLmIbi85WKHEK6VUb converges if and only if

(A) x = 0
(B) 2 < x < 4
(C) x = 3
(D) 2 ≤ x ≤ 4

*A15. Let xEcrbwBUTtbWzagSRazIxeXSlECPO8k-pv6cX31y. The radius of convergence of 35RDDkX7vEc4TnSuO31FBC_E7-nGbJHRbwhSkibM is

(A) 0
(B) 1
(C) 2
(D) e

*A16. The coefficient of x4 in the Maclaurin series for f(x) = e–x/2 is

7FlGl1QK4OhjZQi0NAjuXy-DlEPGapSHmzz7W3MA

*A17. If an appropriate series is used to evaluate 9iRH4DJRmeEBP0gpui-wqqUoyy0eUSVGKylyOnVk, then, correct to four decimal places, the definite integral equals

(A) 0.0002
(B) 0.0003
(C) 0.0032
(D) 0.0033

*A18. If the series tan–1 Ht3Nzb5oAVQeOCMQ7vZTvqVY6JdhDAcdsth7Ye1V is used to approximate z9Wl4ZJsjP3M2F95mKyg-j_6D3fqarVnK8It7818 with an error less than 0.001, then the smallest number of terms needed is

(A) 200
(B) 300
(C) 400
(D) 500

*A19. Let f(x) = tan–1x and P7(x) be the Taylor polynomial of degree 7 for f about x = 0. Given tzuXkJu7JqMH54MDzQ1G6V3ytRT254VO_xTwwaWA, it follows that if –0.5 < x < 0.5,

(A) P7(x) ≤ tan–1x
(B) P7(x) ≥ tan–1x
(C) P7(x) > tan–1x if x < 0 but P7(x) < tan–1x if x > 0
(D) P7(x) < tan–1x if x < 0 but P7(x) > tan–1x if x > 0

*A20. Let f(x) = tan–1x and P9(x) be the Taylor polynomial of degree 9 for f about x = 0. Given YBbYQkpvRsHxgR9tHWlT6fuohPZ-nHHtrrfB5CFK, it follows that if –0.5 < x < 0.5,

(A) P9(x) ≤ tan–1x
(B) P9(x) ≥ tan–1 x
(C) P9(x) > tan–1x if x < 0 but P9(x) < tan–1x if x > 0
(D) P9(x) < tan–1x if x < 0 but P9(x) > tan–1x if x > 0

*A21. Which of the following series converges?

IetKz4Re9vpWBGvwKfstlJVDMVEg69OobO1MEbxB

*A22. Which of the following series diverges?

qAWCuoHH9nymsHF8MkqZKoKDS_AtrfT49KHRNTTU

*A23. For which of the following series does the Ratio Test fail?

R_h22YGuKuoiR97LiePcsuQlLOhXxnldh5KLE0x5

*A24. Which of the following alternating series diverges?

M76RuHck88svQRO5K4t-YzOMXOzdyMGiyI5ZRvME

*A25.The power series XlFZ0y_FfokM6KF4GsJV-ueT_Jp6KY7_RWgL2JF3 converges if and only if

(A) –1 < x < 1
(B) –1 ≤ x ≤ 1
(C) –1 ≤ x < 1
(D) –1 < x ≤ 1

*A26. The power series z0f_Xqj_Tw3v60AHYCWevfuFK59-xoEJ42dZkhNH diverge

(A) for no real x
(B) if –2 < x ≤ 0
(C) if x < –2 or x > 0
(D) if –2 ≤ x < 0

*A27. The series obtained by differentiating term by term the series hRugoen6CCo1H-3pIUe1isJ9vJluNQGPia-E72fo converges for

(A) 1 ≤ x ≤ 3
(B) 1 ≤ x < 3
(C) 1 < x ≤ 3
(D) 0 < x < 4

*A28. The Taylor polynomial of degree 3 at x = 0 for 7ABqg-KZsZKVhyb6ZgrSuOMcFqectZkN3UHyv6OK is

mCkXzh3zX1XC3TcvMuWxjRycM6M0BUpURFIsnq4M

*A29. The Taylor polynomial of degree 3 at x = 1 for ex is

Bz2-vzMQbjSxrLp9JNiqgcEFHGRPfHlCyEqS6U27

*A30. The coefficient of RrKdgVrJFh3tP64mpy6mZCoRptMPH1ioeuaZldtY in the Taylor series about FWT5jAWfdKg0qsq0uSRM8piCjQq1Gau6tye2iXo6 of f(x) = cos x is

T-OPHHJWkcDN-fmVfCHeMSR19uidAcNMYM8bQVWy

*A31. The coefficient of x2 in the Maclaurin series for esin x is

moyti0jwUcrXEw-YmR_TN9XbyA9IjuQzZZpJtNgW

*A32. The coefficient of (x – 1)5 in the Taylor series for x ln x about x = 1 is

pYuXCAPGE2o-ZOYGS50-mGFEmKbZJoapIRHaAWrm

A33. The radius of convergence of the series jGjZxI7uzXSxWARRmq64ukQblcjJPUkJDYLcnegb is

78jBiQlWzCGnOuMoI3xbRyCCivtkxfq4edYueUFG

*A34. The Taylor polynomial of degree 3 at x = 0 for (1 + x)p, where p is a constant, is

1ScZyq_Smr1PXqG9_1PPQk6IXmqfueiSLkltD5kw

*A35. The Taylor series for ln (1 + 2x) about x = 0 is
jRLyCHHIabYFYwuC0s4IpIFpuUM1rknWP9t5vUqB

*A36. The set of all values of x for which dmEIeH3qWtQru-gkxonrPH7Tt6p102wbZNmbErmQ converges is

(A) only x = 0
(B) –2 < x < 2
(C) |x| > 2
(D) |x| ≥ 2

*A37. The third-degree Taylor polynomial P3(x) for sin x about 7FWcRmjpru8BZJdIf1PMRYGrUY5y0JrlR4EgKob5 is

cYCwm_vVf6Ox3fiKEFvfd5TPpGMAO1ZuE1XXhQD8

*A38. Let h be a function for which all derivatives exist at x = 1. If h(1) = h′(1) = h″(1) = h′″(1) = 6, which third-degree polynomial best approximates h there?

(A) 6 + 6x + 6x2 + 6x3
(B) 6 + 6(x – 1) + 6(x – 1)2 + 6(x – 1)3
(C) 6 + 6x + 3x2 + x3
(D) 6 + 6(x – 1) + 3(x – 1)2 + (x – 1)3

DNVvJ1BHPoew4VT_udPxk1xkzcchYs8wY-fk05Qv

*B1. Which of the following statements about series is false?

(A) YvRqjpZdARTKe1aqY0h-A2bZl5lpLTDYjqV-5hCJ, where m is any positive integer.
(B) If RB_jcUWCDcOY-lXciUMXo5odTZKjz4Ra9XaUls3C converges, so does wH8t0WSD2qqNM0913bB6AyU6eieC3hEQCHs8lxIp if c ≠ 0.
(C) If poWNAg-x0pX4jA6xS0hnkMfyQmogFlOQnci9o2Z5 and m0z3rmk1tLbV69Cy1wyd-n7KVWBvH4fI_LrsNCwh converge, so does K-dfRUoankipbkf1rkFb84rElMY9DuHGNx2BJtm5, where c ≠ 0.
(D) Rearranging the terms of a positive convergent series will not affect its convergence or its sum.

*B2. Which of the following statements is always true?

(A) If quf-quK5XH6V9wUHCMrf3naQkT-pNMHo2hoy3et- converges, then so does the series CrE8FCYKOJAimJMIN_GX5zH5kx29AE7mdHxXhsTr.
(B) If a series is truncated after the nth term, then the error is less than the first term omitted.
(C) If the terms of an alternating series decrease, then the series converges.
(D) None of statements (A), (B), or (C) are always true.

*B3. Which of the following series can be used to compute ln 0.8?

(A) ln (x – 1) expanded about x = 0
(B) ln x about x = 0
(C) ln x expanded about x = 1
(D) ln (x – 1) expanded about x = 1

*B4. Let Y7fTVAfk_VQV6-UnVOfLlYqPGPiMB7W49AEjtpbu. Suppose both series converge for |x| < R. Let x0 be a number such that |x0| < R. Which of statements (A)–(C) is false?

(A) _HjcGmoEdJSC0SAloW9MZmIzAkTryU7TdQfdwPva converges to f(x0) + g(x0).
(B) RwUYiMmucYThQo0c3uiNfE5LOTUf0nqNVZ8ntI1K is continuous at x = x0.
(C) BjwbgLe8JuA4bKFkd1kTN_19dbE2K69y-oGCHFfL converges to f′(x0).
(D) Statements (A)–(C) are all true.

*B5. If the approximate formula SswXuIXZRger6cIDK_IqsZbhbGHUGbA7nxVJAck6 is used and |x| < 1 (radian), then the error is numerically less than

(A) 0.003
(B) 0.005
(C) 0.008
(D) 0.009

*B6. The function E5ghQOCUaEkOH2Qo5M088izF_iZvoPXCLvJIPN_b and f′(x) = –f(x) for all x. If f(0) = 1, then how many terms of the series are needed to find f(0.2) correct to three decimal places?

(A) 2
(B) 3
(C) 4
(D) 5 

*B7. The sum of the series rtAeDipTVAVuJJsMSOJ2_GFyvdH0VuSkkWIJWQ28

7UibHV6BvkDNLAdsuPFoXjRmCrtLJeql7tauuYo_

*B8. When gsRLWH1AryNmU4v1vLkcv9uBNejrZqCZCiYWwTiF is approximated by the sum of its first 300 terms, the error is closest to

(A) 0.001
(B) 0.002
(C) 0.005
(D) 0.01

*B9. You wish to estimate ex, over the interval |x| ≤ 2, with an error less than 0.001. The Lagrange error term suggests that you use a Taylor polynomial at 0 with degree at least

(A) 9
(B) 10
(C) 11
(D) 12

Tư vấn miễn phí
PHUONG NAM EDUCATION - HOTLINE: 1900 7060
Để lại số điện thoại
để được Phuong Nam Digital liên hệ tư vấn

Hoặc gọi ngay cho chúng tôi:
1900 7060

Gọi ngay
Zalo chat