357 Lê Hồng Phong, P.2, Q.10, TP.HCM 1900 7060 - 028 3622 8849 info@luyenthitap.edu.vn

Practice Exercises - Limits and Continuity - AP Calculus Premium 2024

Practice Exercise

mB96FtqA7wd2XZKAnIl0DYNAc8UkEP_a6xRElJXX

A1OvZUlKk5P_fOx7BWP1SYraY1T2vDUohbyPO44Avq is

(A) 1
(B) 0
(C) GPJVGlBzD-kP5UI8TSsNEq_9NvZH7rut2UWGicFo
(D) ∞

A2LrtnBLrTaIBKUo_r7kGUh9C5JsNxfKinHXdrCpaUis

(A) 1
(B) 0
(C) –1
(D) ∞

A3J4yaznftkLYv2BGY-mvrERv00lqgfzj-MqkleubM is

(A) 0
(B) 1
(C) MwYj7YtYxxFkxz8T1G_4ikx-L1LMkMgOm5uW3SqZ
(D) ∞

A46KrqjOK5LfCH4RTm0i1EHn2Ue7dvJ3sBtJ3ULDZI is

(A) 1
(B) 0
(C) –1
(D) nonexistent

A5_EcaTtpTms9MyPbEyag35MEV7T5wbQ6G_8B6HDWO is

(A) 1
(B) 3
(C) 6
(D) ∞

A6TgAuf254_8PHY0KVJYx4AfSz_8BCdtcnzdkn-xQU is

(A) –2
(B) RbXTCW40LnaqA9mec_SQvMigTOSmU7SI55pTxKLO
(C) 1
(D) 2

A7ax_9hQvRFYUcbNg_-s-p6Ka3hJj2_C8m1fH0dPn6 is

(A) –∞
(B) –1
(C) 3
(D) ∞ 

 A8fhpKC--_cKmi7WVuShVELy5G6ZA8Bbyv4JYYvspa is
(A) 0
(B) 1
(C) 3
(D) ∞ 

A9Es6rsGJpEQRMEq3oMgAk3kzyK70gn03gQTCMwZGF is

(A) –1
(B) 1
(C) 0
(D) ∞

A106hr52D4quRdSl5dwlosgGna8Tg4grNOn7JXj4sIv is

(A) –1
(B) 1
(C) 0
(D) ∞

A11KjHOBJEV17_FQD93aYm69Bs2TEMFjhspgZDIk7FW
(A) WuRDWdpz6PMVCklQhn76VbVsHrYOH9z6vs6w9fim
(B) = 1
(C) = 5
(D) does not exist

A12e4WWJ6vQCRVfdJOrUCnNT5IcJTsdu3XQKkEM2yQP

(A) KR32_cESqKqMwTBgiSutiJwW4ZDKnYM4LZdKBgS3
(B) = 1
(C) JuDjnACNRgdJafgqWBdPhM7yybgMP21yScHEpgwi
(D) does not exist

A13. The graph of y = arctan x has

(A) vertical asymptotes at x = 0 and x = π
(B) horizontal asymptotes at 5RbGknSWAuLzmUg6ATJQQO4T-9LxsxNVOa4RiApe
(C) horizontal asymptotes at y = 0 and y = π
(D) vertical asymptotes at Xagc6Frmv0b2pzqwsZO7Fyrb-QAHd2obcpW2Z-P_

A14. The graph of O6PO9m-KJOby7Lc-TY5KttyzkWL1NRDjl6H5UhzX has

(A) a vertical asymptote at x = 3
(B) a horizontal asymptote at AmmILGcewBXtfl5zElf0Q6BDsIdR7TuMtjQ458Y2
(C) a removable discontinuity at x = 3
(D) an infinite discontinuity at x = 3

A15xOgWteDxFHzqCwET3jINL4o7GRFr0vJmUem_JyuF is

(A) 1
(B) eHSr-SJQeZSuI9b7ugXoZ3sK58BNsN2_rnPDEirr
(C) 3
(D) ∞

A16RIMpCthV6ZUOcOg0l9m5u7QlH0CoKiPoL4850ccW is

(A) ∞
(B) 1
(C) –1
(D) nonexistent

A17. Which statement is true about the curve bPV-e6b1DbRT6zGEzAs-jgfskCdiUvVZnE_s5Sf5?
(A) The line R3-N_Du0Q4cghvi13atsLbPdRlqwez83T0NREj7Y is a vertical asymptote.
(B) The line x = 1 is a vertical asymptote.
(C) The line ezyxeetVV9ixVjZVuGjQml6vEhA-wqhpQKwJUxdW is a horizontal asymptote.
(D) The line y = 2 is a horizontal asymptote.

A18_DdyV9PyhTvFN0D6kfLeOWetL_S1v-Eu5eM-hNDw is
(A) –2
(B) 1
(C) 2
(D) nonexistent

A19QWSrHpyM9s524t_vn1JAOougoh3T-QiKYjmFr9Ig is
(A) 0
(B) 1
(C) –1
(D) nonexistent

A20PkUPCz2ucdN8J9WgM8HXQ9NgsHXj5sHdMCjBCPXa is

(A) 0
(B) –1
(C) 1
(D) nonexistent

A21pGWT18q4bol9GfdhLto4KRw67sr1VfKrnTNVQcXB is

(A) 1
(B) 0
(C) π
(D) nonexistent

A22. Let QOLYLF7ZijxquAa2jQUQ2ylQfDLKXOdNb-339Ghj

Which of the following statements is (are) true?

I. PTuTsly-vBlj5GWbHOhl4u-hyzX1fdYCjFjGbBfD exists
II. f(1) exists
III. f is continuous at x = 1

(A) I only
(B) II only
(C) I and II only
(D) I, II, and III

A23. If D8y1qHlip74T9cuZeZedfnuECDgRs9Bdun02RZO4for x ≠ 0 and if f is continuous at x = 0, then k =

(A) –1
(B) u-bzP9Td6dwbsBSCa5CDxL0-dty0u_YZ44Fj4hnx
(C) mnqhADct9BW7a6fOPoM6wt6oVPVCrFaJ_zskitXB
(D) 1

A24. Suppose umn_CwqLY0bfMOjYDpKwN5CwaLodQM0Lx_YxUHNg for x ≠ 1, 2

Then f(x) is continuous

(A) except at x = 1
(B) except at x = 2
(C) except at x = 1 or 2
(D) at each real number

A25. The graph of ohBl_MhBy2jghHkKyX_figa63uHGkoU2bKWEzNV6 has

(A) one vertical asymptote, at x = 1
(B) the y-axis as its vertical asymptote
(C) the x-axis as its horizontal asymptote and x = ±1 as its vertical asymptotes
(D) two vertical asymptotes, at x = ±1, but no horizontal asymptote

A26. The graph of 9TZMBuWe_jDtSJXEGXqh4CuMYURUutWfZ16l_KKB has

(A) a horizontal asymptote at yVSFRsz7EniVWf0z4yMtiVy1Q6NISR2qoJd2oQpH but no vertical asymptote
(B) no horizontal asymptote but two vertical asymptotes, at x = 0 and x = 1
(C) a horizontal asymptote at yVSFRsz7EniVWf0z4yMtiVy1Q6NISR2qoJd2oQpH and two vertical asymptotes, at x = 0 and x = 1
(D) a horizontal asymptote at yVSFRsz7EniVWf0z4yMtiVy1Q6NISR2qoJd2oQpH and two vertical asymptotes, at x = ±1

A27. Let U5egItjlZ4DI0CTRwo7s2e2xD0XVc61T9eUKbeKr

Which of the following statements is (are) true?

I. f(0) exists
II. 5Z9Yace_YeTp7BU_PT_Gi0lZMpHElmoRRO-Y43gi exists
III. f is continuous at x = 0

(A) I only
(B) II only
(C) I and II only
(D) I, II, and III

KblXbgbPFAANmZD5WU7O5H7Fk_WsftQr1b3ISIFd

B1. If [x] denotes the greatest integer not greater than x, then PnFvKaawwfyfBsxOLXZKOY_Wwc31BuxPZgBbEN2I is

(A) p_2f0sf93QcSFvFpW0KZgJQEYReeG1Aq_a3ZRgZZ
(B) 1
(C) 0
(D) nonexistent

B2. If [x] denotes the greatest integer not greater than x, then UzVE7pMBpC2L-jEKRdq-IRzQpsRX4jk8HhyMNnvc is

(A) –3
(B) –2
(C) –1
(D) nonexistent

B3lLYi1yTkHke8XtioMVudidFSV_tXbtzuSsA2dFNK

(A) is –1
(B) is infinity
(C) is zero
(D) does not exist

B4. The function Bc6F0TJPnyr4KKbGf5wUO2IX_thWP7yvidEhdw7y
(A) is continuous everywhere
(B) is continuous except at x = 0
(C) has a removable discontinuity at x = 0
(D) has an infinite discontinuity at x = 0

Questions B5–B9 are based on the function f shown in the graph and defined below:

d38bxPO2ITwXQ1gCkDWpw-UPDbwZrMss7wurOie7

lNC49Xl-lKU5pqe6mBPRkJK6iNf_XCwwZ9iuRNZh

B57FObwAQsWNqCL_Hu6U9-O5IF4fZ1RoDru1SyNc6c 

(A) equals 0
(B) equals 1
(C) equals 2
(D) does not exist

B6.The function f is defined on [–1,3]

(A) if x ≠ 0
(B) if x ≠ 1
(C) if x ≠ 2
(D) at each x in [–1,3]

B7. The function f has a removable discontinuity at

(A) x = 0
(B) x = 1
(C) x = 2
(D) x = 3

B8. On which of the following intervals is f continuous?

(A) –1 ≤ x ≤ 0
(B) 0 < x < 1
(C) 1 ≤ x ≤ 2
(D) 2 ≤ x ≤ 3

B9. The function f has a jump discontinuity at

(A) x = –1
(B) x = 1
(C) x = 2
(D) x = 3

dhl8nsyzfhm42gtc8qsJ7Z3XtZB9bgnV0bjjpR41

B10xvHqBIPXDBuG0ZMGLcYJ-FIte_sUQE3Phw4riGPg

5Wp2z44ahHUy306QJdRIcnvi1vl5sq1UeChmfhLI

CHALLENGE B11. Suppose dDYGtrwtdlKkBoYJi_RyPOJVNt1NcyRqTtGzNU4mgUOhDsDB_yu6FZTa-HAaNksf7UcYA3jGEBLNG0AF and f(–3) is not defined. Which of the following statements is (are) true?

I. lJVwADj32dkw23OszCaIVlsdCSd49BqS5BbF_Hi6
II. f is continuous everywhere except at x = –3
III. f has a removable discontinuity at x = –3

(A) I only
(B) III only
(C) I and III only
(D) I, II, and III

CHALLENGE B12. If ZoRxl8JMUe7NKq8LRyLz7ap1qvcnPv6CGnW--vEM, then QR0n1z-eRfSnB571KytI08x7BAEHe5g2zpdde6K1

(A) = 0
(B) L03UQ9H0sNA-fuIvJK51d6VPG3hi_dU_2xrGFx89
(C) qeo6AgGtWHVn3SnQZmoCDv3pXcWz1WP2VldNU9rc
(D) does not exist

Questions B13–B15 are based on the function f shown in the graph.

 

HBU4oyGw-2AxJG8gEssrOPgU8sB55meN2XiNNsrt

B13. For what value(s) of a is it true that AMucaoaBrCZqcvxPEWkvq3y_6uoz9x1kQZKys69Q exists and f(a) exists, but sBtk8yGJ-e9277XyVEnfE6kcxhkdorJ5UnA_XzQC? It is possible that a =

(A) –1 only
(B) 2 only
(C) –1 or 1 only
(D) –1 or 2 only

B14AMucaoaBrCZqcvxPEWkvq3y_6uoz9x1kQZKys69Q does not exist for a =

(A) –1 only
(B) 1 only
(C) 2 only
(D) 1 and 2 only

B15. Which of the following statements about limits at x = 1 is (are) true?

YqApUiFcEVGdu_R0Nmn774cYYuTIddrL95-QCIS4

(A) I only
(B) II only
(C) I and II only
(D) I, II, and III

Tư vấn miễn phí
PHUONG NAM EDUCATION - HOTLINE: 1900 7060
Để lại số điện thoại
để được Phuong Nam Digital liên hệ tư vấn

Hoặc gọi ngay cho chúng tôi:
1900 7060

Gọi ngay
Zalo chat