357 Lê Hồng Phong, P.2, Q.10, TP.HCM 1900 7060 - 028 3622 8849 info@luyenthitap.edu.vn

Practice Exercises - Differentiation - AP Calculus Premium 2024

Practice Exercises

McGTEHSqKOBigyKRI79ngks9FgDDxg4Jrb99MxYl

In each of Questions A1–A20, a function is given. Choose the alternative that is the derivative, redPnBViJ8_AMlz51mg08Ua9KiYf2rpVQY50zC3Q, of the function.

A1y = x5 tan x
(A) 5x4 tan x
(B) 5x4 sec2x
(C) 5x4 + sec2x
(D) 5x4 tan x + x5 sec2x

A2dJBDe5zxK5vXHiQLafePhbVFob7if8qyR_V_hSRO

zJ_tICEpi6up_5C2X854-UCjRt0xlB2sdCu9VbqV

A3906cpcLpyf-eF2FEtIxrUKi_ATbWh9v7gpl3LtSl

EbijTjT0pOS_7wb-eDKfVB_B4o7Vgc30lIKepyZO

A4dZLtJ-vFPk2PP_bUyKNDx3HVBJetjHqQOmOwGJGx

fsKB9uDJf0HtzaQnI3DNdhMbebZR45zqUuFS_JwM

A5y = 3x2/3 – 4x1/2 – 2
(A) 2x1/3 – 2x–1/2
(B) 3x–1/3 – 2x–1/2
(C) Ck1gJ57Q4qS1oPsupqWtsOEfnSkm1Ii2rrmq8Uek
(D) 2x–1/3 – 2x–1/2

A66Td2EQlGWJxHtPApf3mpaduHV1LWGMOzvfUIAiuv

ZhfKLQbXJ57lPlt516y5WD5nSzNDVT9JU_-Nb-L7

A7L5MyF-YZBsB2szlctE4g1jKsCH9bmSizf-IyPaVB

vZwn5NymE72YIC2osFbw2iGA80AMNUWXikVQVkgF

A80jWaW3V5eg2-B2gPpm-PCizVg1udMmIKfmcsZJzJ

SC_ZjdQ9AfMM6mBcXJZz0RPzbacHVG9nJOfz2Yu_

A9WrIfwFgvm5L-6RJSWyKAi4HxmHs39az2EybKxBIG

pxYnyAo9V7wkzHZa4fRsu-Dk65wJCS-NgNiHnF2a

A10GZFX1GBiSWeBgH_dS4SGqEx61dAFss3MfAW7E-Vm

oDDc9L2GyS_UfrmqQgPmob3YYkXG7cAe7rYJER6p

A11y = ln (sec x + tan x)
(A) sec x
(B) ysRt39DFF4rx5zvT4fFeVebHqEj9y9VvgT0cWN7v
(C) gafFaR3ZCpAOr0VyY_Ar4xstSiJEAW8nXnFAiFEc
(D) GaEc73nT4Bgr30vbTCpMrF743n8y8DnMsVv86pwy

A127ZWHH7q3c4QJELb6d1JiIUWPoVW51DRODsth6cqU

(A) 0
(B) 1
(C) ms39BxWW7MV6S-9XGrq-zMPyl71G4G0rQiUK-9rN
(D) Z4hOoN7BiW2sc-5BznRbEkyTbw2wSbMgceiTtjBL

A13JI5ccKZfvKcjskrZFIfz5KswxrWfU-vECW5uYIup

tST98BA0glmhgMUrE8N1kLfJZjEo0xTA5IH1mrdF

A14zhmu7vVjUlvMZL2gNScLS_92TwvXs-eJZOKDxtwt

fIIXICDl_zG-1DDf1XCFS8XK4VBM8SQmdA0TOLyA

A15vitgN2IAKC_zqhFDUfdBsHc2SUHyOyhyZu7i0iMj

(A) –csc 2x cot 2x
(B) sYH5Ry465SBtTYahBbVUN3I6H0udcEwDtTF3LW8q
(C) –4 csc 2x cot 2x
(D) –csc2 2x

A16. y = e–x cos 2x

(A) –e–x(cos 2x + 2 sin 2x)
(B) e–x(sin 2x – cos 2x)
(C) 2e–x sin 2x
(D) –e–x(cos 2x + sin 2x)

A17. y = sec2(x)

(A) 2 sec x
(B) 2 sec x tan x
(C) 2 sec2 x tan x
(D) tan x

A18. y = x (ln x)3

(A) KZbMN5hICess67Qf3tvgwIXtEC9J0JKDGT3n6sbS
(B) 3(ln x)2
(C) –3x(ln x)2 + (ln x)3
(D) (ln x)3 + 3(ln x)2

A19BFjLicHckMehq4LnE4958wikKLk1kbN7qxqVOA4r

OiCww_pqcLJnmBc8lBshCeOzd3uybjmmQsFp77gk

A20rFXIkn70UyqMWYiuvmeu0V9hZWsH1xnW9lBSMML2

zq55oY5bwc7ViZfQnLAxE7SqnQGaqB5dV5CUzCe-

In each of Questions A21–A24, y is a differentiable function of x. Choose the alternative that is the derivative FwLkPTMHa67yz1PU8ooDzNPkTXz1c6GOVP9Vx9TO.

A21x3y3 = 1

(A) x
(B) 3x2
(C) 12YkIL1NbVjQqj6foBm7BW7dcq0j4j4Lr4_II_n5
(D) 8Wqv2AQ621xMr5CNuYtLRW0bbzUSZWXIAGueE-As

A22x + cos(x + y) = 0

(A) csc(x + y) – 1
(B) csc(x + y)
(C) osltn3Dzu0XruPp1FT-MZUQyhQNEoF_ZhieaZzGn
(D) c3PMdpsSCNdYIEBmTUg4NEhSC2eOEfEKp8oDqAnJ

A23. sin x – cos y – 2 = 0

(A) –cot x
(B) wzplZaPk_XjUkZjstzR5n_0d4iX1o41yx2wlLE6O
(C) –csc y cos x
(D) PL69t6OyVHmf2JHm2hS_oT9Tl_e2NoUWfDVJH7Bi

A24. 3x2 – 2xy + 5y2 = 1

(A) JfJ7vH7axv4p-yKCLjBX2richbV7qhxsiaC6MIXS
(B) vpcbHS7mbHE8zj4iCzyOlRKtu7971ZDdKdhZTKBn
(C) 3x + 5y
(D) NgDYO9p2CggnQ_Phpy2AXMwF_g5L2uED0dAEOmMa

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

*A25. If x = t2 + 1 and y = 2t3, then 9W7LbAX2XpQ0vF_bqP0POfmo3K0-9cAiy7vlJaoc

(A) 3t
(B) 6t2
(C) KROUBcU1BwtlJjurnUapivJPNjN1pIP8X66WOzbd
(D) OGWD9N4Y2vdBBDjDRJGJ2O0sCNKUd8K4vOt_ldqe

A26. If f(x) = x4 – 4x3 + 4x2 – 1, then the set of values of x for which the derivative equals zero is

(A) {1,2}
(B) {0,–1,–2}
(C) {–1,2}
(D) {0,1,2}

A27. If tIjI6lW8avx9-xGEwr-mMxC8YmmBmKZuc6kbVKvW, then f″(4) is equal to

(A) –16
(B) –4
(C) –2
(D) R2o0JIirqlnIojgdwV7wVAT4cezyiIcQgqd-pM2x

A28. If f(x) = ln (x3), then f″(3) is

(A) Iz3C9ogpqb5z0A4IzjJu5sQIBec8LSKtnK7PzzMi
(B) –1
(C) –3
(D) 1

A29. If a point moves on the curve x2 + y2 = 25, then, at PiNMXHMRcH1vuaIbR9qg7o9M8W7jD_1dqGG7xUW9 is

(A) 0
(B) PMj1VrbDVVzHcC_eIHLuC7WM_yCSm_dv32w9JQyV
(C) –5
(D) NkWzRT0x6nxufxUHA_ohFenx42KOSvbdROXM6_yS

*A30. If x = t2 – 1 and y = t4 – 2t3, then, when RPA6iPX6lpDPyvwqB4D20M6BBmfoEqSyYUjGA-No is

(A) 1
(B) –1
(C) 3
(D) GDIS3bHPkz9bRYDQdGN8l1psS6ih9VVhnfD_j03G

A31. If f(x) = 5x and 51.002 ≈ 5.016, which is closest to f′(1)?

(A) 0.016
(B) 5.0
(C) 8.0
(D) 32.0

A32. If y = ex(x – 1), then y″(0) equals

(A) –2
(B) –1
(C) 1
(D) e

*A33. If x = eθ cos θ and y = eθ sin θ, then, when GhcNGaSZfVo1oElKS9ZBLNSG2W1iDyDVl-Hj7llE is

(A) 1
(B) 0
(C) eπ/2
(D) –1

A34. Given x = cos t and y = cos 2t, if sin(t) ≠ 0, then eL-vw4ww0NfbDZfnr8Td72ImpIxvIBIFJ4gljuMs is

(A) 4 cos t
(B) 4
(C) –4
(D) –4 cot t

A35IwfB3A40hp6v79ywSvhmcVaoWzw1WmrS2ZWp_Dm8 is

(A) 0
(B) 1
(C) 6
(D) nonexistent

A3619zPSA2qW4JbJhg0pAbAgholJ0LDdOGP-ASL0vF4 is

(A) 0
(B) PWAZ4aRM_dei-Sk-imNJTvjBIs4s2uFONKxB9D09
(C) 1
(D) 192

A37NnNHD2AtnJiSVlGeezMB4lo7ZJwMd9w8lvLbAkpr is

(A) 0
(B) NUz14u4N9-b6tGq34u5u-jFL4_sOZh8HUFjAldjn
(C) 1
(D) e

A38xpz979rvpgf_8gvknw98sOyYirWA4vTqaLsb3wbY is

(A) –1
(B) 0
(C) 1
(D) ∞ 

A39. If nTNR8UZIkdIdeIuSnG26_a1JijsOkAST-P1R4NpS, which of the following statements is(are) true?

I. Ban7_BWbEQtHccQNZKUe_zqSbpaEgTwURjx5sYGt exists
II. f is continuous at x = 1
III. f is differentiable at x = 1

(A) none
(B) I only
(C) I and II only
(D) I, II, and III

A40. If Z25oxUaOCWaZhsuph1nmC9Zm23yBG0JUA0_seFxu, which of the following statements is (are) true?

I. _KKj-OtmpODgkr37R0de6qDsmHq2dTFkMWyhsmrE exists
II. g is continuous at x = 3
III. g is differentiable at x = 3

(A) I only
(B) II only
(C) I and II only
(D) I, II, and III

A41. The function f(x) = x2/3 on [–8,8] does not satisfy the conditions of the Mean Value Theorem because

(A) f(0) is not defined
(B) f(x) is not continuous on [–8,8]
(C) f(x) is not defined for x < 0
(D) f′(0) does not exist

A42. If f(x) = 2x3 – 6x, at what point on the interval hNxnToUY600Vlxa8fLpCSWt4EXANbZSVBGO6bnf8, if any, is the tangent to the curve parallel to the secant line on that interval?

(A) 1
(B) BuhQaxucJXdojQDneFP9fmQYR39_GlTBm9DwStUV
(C) 0
(D) nowhere

A43. If h is the inverse function of f and if ZieYUEH8LZgdabCfb_JansL8DDMz93LcUjOeHl8X, then h′(3) =
xjdsIDX5VZc872SP_zjNQlPVhlCZLb2bYm3hfMTO

A44lZotDJIDh-Haj6bjJJcPH6gKZLM60fH2EbrTv3O1 equals

(A) 0
(B) 1
(C) 
os5ogltY4kEU1W3JWicWC1boUq8lF7_0_-k9E1QH
(D) ∞ 

A45. If sin(xy) = x, then VEWc33N7_rs2GUMQsAMbxb7yJp4U9J1yv4fFOT6X

FUok1Zxasu8bLKkq_z-cbeZ3Ia4SlIgf_sBHNFhX

A46K24E5o1Eie3tQ8_hwzg_QSQSzH0zinTwsqb-UesA is

(A) 1
(B) 2
(C) d1Y16qlDFKoEcFYzrD_YH8J5uNBO7tZzwuPiZXoc
(D) 0

A47d2pH6uuWyRIO2yLKqdu8b0dJlwxsP8lCW2kwVm_qis

77G0z9P6qG3i55mfsDjQxuvm-DCXVPWWe2m7SPs0

A48YwD3EclVLnEO502uocgw9ybw7w_lAV7dBjK-kYVVis

(A) 0
(B) 1
(C) 2
(D) ∞

A4902h_hVX5NnXK-eIPwV-eKaOMOPfvMhEpJP0VEnFq is

(A) 0
(B) 1
(C) π
(D) ∞

CHALLENGE A50qosULMce4GFFiWyXyQDhTE92gBDUNEwgpeRlggNv

(A) is 1
(B) is 0
(C) is ∞
(D) oscillates between –1 and 1

*A51. The graph in the xy-plane represented by x = 3 + 2 sin t and y = 2 cos t – 1, for –π ≤ t ≤ π, is

(A) a semicircle
(B) a circle
(C) an ellipse
(D) half of an ellipse

A52wL-oGN7nZ_7FaOcJ9elIWFoESgGD4KkEiTMCPoll

(A) = 0
(B) FWh25jD-tgOClGfrBeDAdAK91td1zoER0imgZ0m0
(C) = 1
(D) = 2

In each of Questions A53–A56, a pair of equations that represent a curve parametrically is given. Choose the alternative that is the derivative qo7OGiF2JMku3VFG8rUoPr2QTfuOF9u1_RyjoO9Q.

*A53. x = t – sin t and y = 1 – cos t
IlUKFabrAKepxFZZD-HL9fkDOA96dcrGJ4utlqMl

*A54. x = cos3θ and y = sin3θ

(A) –cot θ
(B) cot θ
(C) –tan θ
(D) –tan2θ

*A55. x = 1 – e–t and y = t + e–t

(A) W9ZEaZTaOTKD-ATNJjKVahZSOtpllTQW5AnmgKGB
(B) et + 1
(C) et – e–2t
(D) et– 1

*A56iipnqoAHITcvM1o1sV5WIBesQZHxeFKSiJxpQ1pO and y = 1 – ln(1 – t) (t < 1)

OoG3cJj0fnKYrFelf0xs7Wm16wZbu6yQiFOuZq6R

A57. The “left half” of the parabola defined by y = x2 – 8x + 10 for x ≤ 4 is a one-to-one function; therefore, its inverse is also a function. Call that inverse g. Find g′(3).

jjde51gQF_BBzTc9IlhbZHQC7M3LAkMoz7M6YvYw

A58. If f(u) = sin u and u = g (x) = x2 – 9, then (f ∘ g)′(3) equals

(A) 0
(B) 1
(C) 3
(D) 6

A59. If cWNgeV0WwYCjXkdedPU6ducFFnfCG6ZDyFA0jY_n, then the set of x’s for which f′(x) exists is

(A) all reals
(B) all reals except x = 1 and. x = –1
(C) all reals except x = –1
(D) all reals except. x = 1

A60. If kXA0lw00oftz2rsroTt38joyPx93ZTPIUFkN2atD and BOLhif3Uqm0TM-lMkaduZhOROmaBPcJManSt1XwI, then the derivative of f(g(x)) is

JsRNT3k21GX8ga_b1oCOEhdxxuqHljOgiyXd6_cF

A61. Suppose y = f(x) = 2x3 – 3x. If h(x) is the inverse function of f, then h′(–1) =

(A) –1
(B) EuxT13LD1Spphx0KkamExHrwTOKN1G9iGdk9s4QG
(C) 1
(D) 3

A62. If f(x) = x3 – 3x2 + 8x + 5 and g(x) = f–1(x), then g′(5) =

(A) 8
(B) KRHSqGAVYjOaDNOmNJ9IAhTUMD77yIOsE-lGXqPv
(C) SAVZZf18xg3-KDc5aX1IaK-p7Kiasd60QxtkalFS
(D) 53

 

ZJ7K5M7inBblsHJV8kIfcknMXkbJJ70h_GCbRYaP

In Questions B1–B8, differentiable functions f and g have the values shown in the table.

Lzadzj_Ht_uEZubLCelhF9QqYaeVLQyOaVwf-_wW

B1. If A(x) = f(x) + 2g(x), then A′(3) =

(A) –2
(B) 2
(C) 7
(D) 8

B2. If B(x) = f(x) · g(x), then B′(2) =

(A) –20
(B) –7
(C) –6
(D) 13

B3. If ziimbRJNIkRWc1nAtje47M15uKXdcCHT4Yv_vch6, then D′(1) =

RJNFhIBgu0MUwo0UloaTg6gJSymwTh26dxUmwgdK

B4. If PimnMWPKHETsA-y2GvZ_Im50bGIQJKElykJSfWio, then H′(3) =

254lRgIyQh5E-y-n5-VEzQl98DUZTxIgcGX1VWQn

B5. If aHrv_YmEoCBzzJ-qPiDdfgoytCq237upiyExo9G-, then K′(0) =

ADLmZg_c4qVGhPEVC2Ipw9Em_iBHQ6uItuku-t2m

B6. If M(x) = f(g(x)), then M′(1) =

(A) –12
(B) –6
(C) 6
(D) 12

B7If P(x) = f(x3), then P′(1) =

(A) 2
(B) 6
(C) 8
(D) 12

B8. If S(x) = f–1(x), then S′(3) =

(A) –2
(B) ElU-yijlZWVNuguBHpxaFxl2tyXxGCkvtgmK62vu
(C) Q3D0JbtETzrSp17dy-NoAFs-Sg2ZSgCNLvFtnoXE
(D) 2

6EPUHIuVQtGHg3ap_z9CvaqTuEaBuAXkhnOK_Vq8

B9. The graph of g′ is shown here. Which of the following statements is (are) true of g?

I. g is continuous at x = a
II. g is differentiable at x = a
III. g is increasing in an interval containing x = a

(A) I only
(B) III only
(C) I and III only
(D) I, II, and III

jiZxU25CXZ44zngytyItT4biYK6COo5q2cH2E65I

B10. A function f has the derivative shown. Which of the following statements must be false?

(A) f is continuous at x = a
(B) f has a vertical asymptote at x = a
(C) f has a jump discontinuity at x = a
(D) f has a removable discontinuity at x = a

_Q6uGhUiG22jLp-TWYxyud_1Py_SK775dFB46EUG

B11The function f whose graph is shown has f′ = 0 at x =

(A) 2 only
(B) 2 and 5
(C) 4 and 7
(D) 2, 4, and 7

B12. A differentiable function f has the values shown. Estimate f′(1.5).

gH9pkygwRaArIkS3Y-XWpjuT_HUwzxkDAZOWPf0V

(A) 8
(B) 18
(C) 40
(D) 80

MZX7OeE_eIVZ0Z9QUA_Demov_vkwl4uZJ4f_8KDG

B13. Water is poured into a conical reservoir at a constant rate. If h(t) is the rate of change of the depth of the water, then h is

(A) linear and increasing
(B) linear and decreasing
(C) nonlinear and increasing
(D) nonlinear and decreasing

Use the figure to answer Questions B14–B16. The graph of f consists of two line segments and a semicircle of radius 2.

B3z-gjkRemQV6nn5XEYZ_-yG1nHVGUHB11bzvjEM

B14. f′(x) = 0 for x =

(A) 1 only
(B) 2 only
(C) 4 only
(D) 1 and 4

B15. For 0 < x < 6, f′(x) does not exist for x =

(A) 1 only
(B) 2 only
(C) 1 and 2
(D) 2 and 6

B16. f′(5) =
ASRlVCB6bT9Yow6CeF9ZXFyYPownfmkARSUjqgzE

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

B17. At how many points on the interval [–5,5] is a tangent to y = x + cos x parallel to the secant line on [–5,5]?

(A) none
(B) 1
(C) 2
(D) 3

B18. From the values of f shown, estimate f′(2).

vrTET_USbLbwBvimonAfDsIyMKqzTRgAvepsthl8

(A) –0.10
(B) –0.20
(C) –5
(D) –10

B19. Using the values shown in the table for Question B18, estimate (f–1)′(4)

(A) –0.2
(B) –0.1
(C) –5
(D) –10

B20. The table below shows some points on a function f that is both continuous and differentiable on the closed interval [2,10].

rxwId0OO2F_RVLl96VtOCDajm5KoOsAcIXzQTg-0

Which must be true?

(A) f′(6) = 0
(B) f′(8) > 0
(C) The maximum value of f on the interval [2,10] is 30.
(D) For some value of x on the interval [2,10] f′(x) = 0.

B21. If f is differentiable and difference quotients overestimate the slope of f at x = a for all h > 0, which must be true?

(A) f′(x) ≥ 0 on [a,h]
(B) f′(x) ≤ 0 on [a,h]
(C) f″(x) ≥ 0 on [a,h]
(D) f″(x) ≤ 0 on [a,h]

B22. If f(a) = f(b) = 0 and f(x) is continuous on [a,b], then

(A) f(x) must be identically zero
(B) f(x) may be different from zero for all x on [a,b]
(C) there exists at least one number c, a < c < b, such that f′(c) = 0
(D) f(x) must exist for every x on (a,b)

B23. Suppose f′(1) = 2, f′(1) = 3, and f′(2) = 4. Then (f–1)′(2)
DBZHhl83X0Nt9NYAdsK_GEe_xSRjzFK2rcfWg-40
B24. Suppose Xhdzqhw_KfFGjkhvVibbMUPX1cdro18fTH8ZRkhi. It follows necessarily that

(A) g is not defined at x = 0
(B) g is not continuous at x = 0
(C) the limit of g(x) as x approaches 0 equals 1
(D) g′(0) = 1

Use this graph of y = f(x) for Questions B25 and B26.

cbYpKD2w_jP3Ir7zFHEkC04bJ_6uQt_AVA_88wq8

B25. f′(3) is most closely approximated by

(A) 0.3
(B) 0.8
(C) 1.5
(D) 1.8

B26. The rate of change of f(x) is least at x

(A) –3
(B) –1.3
(C) 0.7
(D) 2.7

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

Use the following definition of the symmetric difference quotient as an approximation for f′(x0) for Questions B27–B29. For small values of h,

hh3IpBobCsbfDcqPgqW08yAHGHzEiyimalUmUdlV

B27. For f(x) = 5x, what is the estimate of f′(2) obtained by using the symmetric difference quotient with h = 0.03?

(A) 40.25
(B) 40.252
(C) 41.818
(D) 80.503

B28. To how many places is the symmetric difference quotient accurate when it is used to approximate f′(0) for f(x) = 4x and h = 0.08?

(A) 1
(B) 2
(C) 3
(D) more than 3

B29. To how many places is f′(x0) accurate when it is used to approximate f′(0) for f(x) = 4x and h = 0.001?

(A) 1
(B) 2
(C) 3
(D) more than 3

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

B30. The value of f′(0) obtained using the symmetric difference quotient with f(x) = |x| and h = 0.001 is

(A) –1
(B) 0
(C) 1
(D) indeterminate

B31. If  vhqH0QIvxOhlk0omoip_3N1BSaK4qMhln8cf4wV4 and h(x) = sin x, then _0HnzKpBRhDX2x48KU1rpaRIm2ecM7KS2m1NHE7P equals

(A) g(sin x)
(B) cos x · g(x)
(C) cos x · g (sin x)
(D) sin x · g(sin x)

B32. Let f(x) = 3xx3. The tangent to the curve is parallel to the secant through (0,1) and (3,0) for x

(A) 1.244 only
(B) 2.727 only
(C) 1.244 and 2.727 only
(D) no such value of x exists

Questions B33–B37 are based on the following graph of f(x), sketched on –6 ≤ x ≤ 7. Assume the horizontal and vertical grid lines are equally spaced at unit intervals.

yKfk1bQORh8q4XC01cRofDQH1XR6mr_2fwnrDyxP

B33. On the interval 1 < x < 2, f(x) equals

(A) –x – 2
(B) –x – 3
(C) –x – 4
(D) –x + 2

B34. Over which of the following intervals does f′(x) equal zero?

I. (–6,–3)
II. (–3,–1)
III. (2,5)

(A) II only
(B) I and II only
(C) I and III only
(D) II and III only

B35. How many points of discontinuity does f′(x) have on the interval –6 < x < 7?

(A) 2
(B) 3
(C) 4
(D) 5

B36. For –6 < x < –3, f′(x) equals
(A) dURgyD_jTC9COTsQBNaCoM3j2_o3a2Yd2mIrwkoP
(B) –1
(C) 1
(D) Eq6eIY0kJCbBpRXyjCGzLs9HZvMR9CLQILFX9EVV

B37. Which of the following statements about the graph of f′(x) is false?
(A) f′(x) consists of six horizontal segments
(B) f′(x) has four jump discontinuities
(C) f′(x) is discontinuous at each x in the set {–3,–1,1,2,5}
(D) On the interval –1 < x < 1, f′(x) = –3

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

B38. The table gives the values of a function f that is differentiable on the interval [0,1]:

QrB6LZB29M-cbAIkOHyMKvTynufOcinaI5FTX8fk

According to this table, the best approximation of f′(0.10) is

(A) 0.12
(B) 1.08
(C) 1.17
(D) 1.77

B39. At how many points on the interval [a,b] does the function graphed satisfy the Mean Value Theorem?

SNhjg_co4RsWF1PoyQW80-3rL8ht_6WdbdApku7C

(A) none
(B) 1
(C) 2
(D) 3

Tư vấn miễn phí
PHUONG NAM EDUCATION - HOTLINE: 1900 7060
Để lại số điện thoại
để được Phuong Nam Digital liên hệ tư vấn

Hoặc gọi ngay cho chúng tôi:
1900 7060

Gọi ngay
Zalo chat