357 Lê Hồng Phong, P.2, Q.10, TP.HCM 1900 7060 - 028 3622 8849 info@luyenthitap.edu.vn

Practice Exercises - Definite Integrals - AP Calculus Premium 2024

Practice Exercises

s3kk_qMGDa-1UwCoLINsNCmF6ZDJAODbgnCjSn_a

A1qRjXDV7O4U04TJV90n7gjLpFjNuYLYCvDwMKtwbj

WILt7wUl-x4UnIej8-8513GwuwT5mYZ1BalwmR9p

A2psBZVgyWI55IgMTYvkDlCQJTPUCh4DoyJZUu3GTh

5ljNo5dU-NBekC3iTjr-LiZSGbsSGY7oHFDuwM0i

A318yE4ONrCwPxQBGVMpsmAKOyEd574qBFOfyAIxmh

(A) –2
(B) 4
(C) –1
(D) 2 

A46bQHAW4aeFy4lQw0i-CJhTelRept52RmVeKyhNna

Xt5B2TYEYgFdxbtVDWkd0lqiLdEJ5pHIERKkw25H

A5T6ty_0Od5E-cpOqDeyXiscrqq4aUL-R_4mKDfiHH

yYxlsivRFKOEUIvyEv_ZDzEg-XLASmYfzfeWRMMk

A6s-ojRpY-jua57G8U-Qjh_UtgdQxdLQodZTRVaBBp

(A) 1
(B) t9sEsALAp2Q9ZFAXwRWGPcyrOmKXtECQqNpFymO1
(C) –1
(D) 2

A7iXKP4en82Fcb83yhk6QIfTrGLn8cemePVkm4-GkD

89Xsl2pmLSSx_hbu5VE_UZtyUV63xY9IOZIUYTFf

A8Din0o5LcNwOyYHD02w2NScCxD9CHtLbbjJNg5o8D

G4CthizDhmU-Q0zywkyXS28EED0i24IWndNJGtnb

A9Laao57W2B9Wt5Riugs0-TBE--3fHUDcNEg5yTuzD

BYh43UiGOHu134NaLghMrkTFymoKpsKg0dA1SR5f

A10zk_vHdIP-D_xv_Hi-eA-E3LGINWoB5-wYZ4j15jY

8OApOSVzIFIBL_-X2Dm1hVh0HHWpBE9cATOAR48w

A11bGrBpDk6ubXVeuf2y6H4yj8ZV9kKHryG2CtCDrY8

7eA4t3t7dD9RCYfFKKMlYK2nS93wzqTiRjOk1ZFw

A12KmPmqGqmQIissYS6NxmdosbQu5CgonUMgVeutF59

It2u8boxnLmCKZ-3-sJdIhubrPp_RzlbKJzdF9L1

A13sMMA4i47k3SCBa25s9qj2p_K90YIQGBkprHzr-K1

(A) –ln 2
(B) HMpJ7ROfW-aOjuwcXG6RxOOFUo0hWZNFJ-lEey84
(C) BGxzby28YqSRU2hkQz4TpQ26VTXt1MyrsfHYEZ4_
(D) ln 2

A14. If we let x = 2 sin θ, then hdnm7Wzb9owmiDYgNBV_y6nGznaIu5mIBr6hYN0u is equivalent to

T_cmZSeHByPZooS7XsV5rA0zX1fYwRbEPmLAeWZF

A15Ke1Zlq8-HPjJuLr2DKRYAihAD6rBa80Cb-ZMY1wP

(A) kIEqE6-nfKhuIynhkuuIVILydK5TrODFkw5X6gbj
(B) 1
(C) EiuUGKTqtjd6TsvhKO-6fHjMWfAwKpKjmKf9feQk
(D) 0

A160225bqd0QvAYRJffGKTC_hCBYTpOqoB0k2RoA_g7

Nr6qKWQMrHW62mVbV2z_gzextuiVElDU5tihywIR

*A17wJqS-AD39o-2UYH_RDO22fuwY4wZd7TSxBPnta_1

(A) –1
(B) e + 1
(C) 1
(D) e – 1

A18m8q-MaMJcnLNFCKiycksXTmVHfO916GlTjyMU1dz

1OzuIMxBAsh1C0Oh2n-q88Jf0LQ3KWJAO2dFTLaB

A19oI2uyAc7buql6rZmf1uBq0lbzbzEpGHMcNFb74EU

oqIBx89f-nmTgZE49Kf-yCJ1OoTBwSLHZQXQGib7

A20IQSl-7N0_9ibRem__t666TcX5dFqU8U4kxB24zcA

onnwCr7KQ8W5cIHIIebll235iaxQv9XG8Ba_HL7v

A217YSb4gcYrE1QCYTfSi-b8nOG0eS0Ob49Iz7UN23u

64mACxxh0I_Rn5n7yioXvXhS6MsUXF_lIYq-Rz8p

A22_-VIk3UuDP_vXsu2yXC0JbvDL7bxxr-52OVOr6Oy

(A) e
(B) 2 + e
(C) wu6lxpReqiyPoTJujM7LfDxtrte-RON-jkc2bt7K
(D) 1 + e

A23vH46oEGsgqh0_Gaztm32A-ML3Yep7KhBfGxNSqHS

(A) ln 2
(B) 1 + e
(C) –ln 2
(D) 3N4DB80Nure5FhBIJMzH90sXZ5w8mug0wrda1RwJ

A24. If we let x = tan θ, then Wnvh1o39E560GaViemDzF51xvurlt1gY99Fo1ljE is equivalent to

gAq8vWggQJRxa3T4r5lR0v85NGsbfRDjGznlGWSO

A25. If the substitution ezAPRIjT12aunrMTPzTGv0Q95YJNkqNL1wWB_RiN is used, then VuSY8IecNj8-BAkfXlZzeKa6i9x4vf8fbZKHiJ47 is equivalent to

8D_5qsU9-vbfg5M-7cuATkVSKXFImDOhgFLaeNMj

Ft5ZVEDfXOSXCkhy8SvVc29WVwC3RYMotBV7WeMd

A26. The table above shows some values of continuous function f and its first derivative. Evaluate hXvvGSTVpkP0EEWw1uiVa4BgxgZfErWriSy7sfpl.

(A) –1/2
(B) 3
(C) 4
(D) –1

xjw3l1ZlW48Gb1DBstIufy6yUDXcFPlo9qOebjlC

A27. Using a midpoint Riemann Sum with 3 equal width subintervals, find the approximate area of the shaded region above.

(A) 19
(B) 36
(C) 38
(D) 54

A28. The graph of a continuous function f passes through the points (4,2), (6,6), (7,5), and (10,8). Using trapezoids, we estimate that 34ouZn1zTjdl4QFQ7UodYcPoALn9n-0rzQI9fqGs

(A) 30
(B) 32
(C) 33
(D) 41

5U9-fsYSwsusY8mzNTXByR-LLe0wr4-qbxndl9Vj

A29. The area of the shaded region in the figure above is equal to ln 3. If we approximate ln 3 using both a left Riemann Sum and a right Riemann Sum with 2 equal width subintervals as shown, which inequality follows?

vjOTzVEZiZxufAnKDxXAv2_RiScfFepfrXQuuzIF

A30. Let 4womfArZsx_e59Afw0mpKl7P2Fr6inxj2tCrbKFI. We estimate A using the L, R, and T approximations with n = 100 subintervals. Which is true?

(A) L < A < T < R
(B) L < T < A < R
(C) R < A < T < L
(D) R < T < A < L

A314ZrMTe6yY6wnC7O1t5-86CUGjM1TqMGgB9Q2xFpz

7Q6isfjZV_qHbz06Ajp2x5WkyMJbD0PbTOxY8ygT

A323YRQm6wmUb3vJovr4inMV4G177iewJJ-jLvzVoFq

6vEuR7nsGoUcBNDM1uANqgeHG_PXtI_5o7IafVQz

A33. The average value of AacnHmhHPOeCUAuzEszOJWgtatmG3JoENT5IhZrh on its domain is

(A) 2
(B) 4
(C) 2π
(D) 4π

A34. The average value of cos x over the interval lOG2Zg389udVXcGcIbWP2NAXZYLXhWwXL90PhC4o is

27uqRyGqa0X3vt85XJYPYx8a_awpmntLrnPzKLnv

A35The average value of csc2x over the interval from alNi8v7PBPpeSIronhjCtRP51pIgEik6BjpQ-X8h to TuMKUqwGHIomjwO4tm-kiMaDqU4RkLinXM0cQFBQ is

 

49yb4l4QByHEYzyS_V3pcyzhn50s9Hrl2omaq0or

A36. Choose the Riemann Sum whose limit is the integral 62LqKrBrD8qmbViVKuwp01wRaDEPlSMZx6BGfRr3.

izqJl6p-eTUhpQ-1ttwRA7gwkWX_HukIbjpzoGLT

A37. Choose the Riemann Sum whose limit is the integral z5tlwggV9nHfw-3HAVaNxcj3N1egWMRmdnewQKl_.

wtgVRAspy4IKu8eCollblnqzrhRWXpkrMf-Od6Qq

A38. Choose the integral that is the limit of the Riemann Sum

tEdF1Lc2ufEMMIDwLB-tMmAc2cqVbyQ2hleaKsdf

ERjx_H3D0U5vVjuu9TmLnhDc-Tl6w6tCe_GBZt7W

A39kl-lABUQ8mvJvUqvf0cmcidZ_GFZ2co-SQuhiE0N is equal to

gfE4KWFvW2GopswV6_tGEm5e4HvKtgXk-FYpK8jO

7em_Pulze92XPf9uQKpvYNVwZSGtp2qugyUPZ-VA

B1. Find the average value of function f, as shown in the graph below, on the interval [0,5].

W7jbYErFapWaYEEKmSeZO6pXoRDrYbOnkfpQpYBX

(A) 4
(B) 5
(C) 7
(D) 8

B2. The integral NKnIharZvFpyAz5vACXtNDAC_LxLwslJMwEC8koS gives the area of

(A) a circle of radius 4
(B) a semicircle of radius 4
(C) a quadrant of a circle of radius 4
(D) half of an ellipse

Use the graph of function f, shown below, for Questions B3–B6.

Z8ie5egYuqVgip0KWnMySBXTzeMNtHLcEw9DK6Co

B3. Calculate the average value of f(x) on the interval [0,6]. Which of the following intervals contains x = c, where f(c) is the average value of f on [0,6]?

I. [0,2]
II. [2,4]
III. [4,6]

(A) I only
(B) II only
(C) III only
(D) I and II only

B4ORODU8EM-cSV27kUkRILJxkjm0s4P0qQt9elGJYS

3Cy_BNkkARE7X07NXu0k6eDCryuiYB4WsVNdriao

B5. Let e1z5Pb6LJGYpeOlxB_VDKPVKi__q0cD4pm5i_Ybi; then g′(1) =

(A) 3
(B) 4
(C) 6
(D) 8

B6. Let h(x) = x2f(x). Find wHvE6K3I58msaBDQQkbU0ZQesVHbfL-yGs5HNoW-.

(A) 38
(B) 58
(C) 70
(D) 74

B7. If f(x) is continuous on the closed interval [a,b], then there exists at least one number c, a < c < b, such that mMw47FvxtfL3UVUlZmwflDSzEGqm5T9J7b0gjg0H is equal to

(A) js08BiUk3mqe3SIwHjZbYtegjWo_hO_-9YhrKOGc
(B) f′(c)(b – a)
(C) f(c)(b – a)
(D) 
slw1rvfJyIjyK2QbwNx_8f2Zfty9xoX-4kIoJc0O

B8. If f(x) is continuous on the closed interval [a,b] and k is a constant, then lwDdP7gJtVH7MoG2TDcGZGSD_MWL_A9r-yQRB-Xa is equal to

(A) k(b – a)
(B) k[f(b) – f(a)]
(C) QKFrDq_TMcLCyPEN_ApqAkJSdqQPc-JpCVlg0uv5
(D) FSPowXUJn08NwxseY-ZvM84IEtMqCejj9rDx3zd9

B90ncCRhJuYywXR_DqJ9dfMk5bF_H3HWjJQ7FClrZy

47NPNy50QO57DRYhtNYGbbsJZ8IvGHIn4G3mQsP0

B10. If aQb6PFrLpaO4lnMAcJ94Nu51m4jleKBiv7wWiqvy, then F′(u) is equal to

(A) –6u (2 – u2)2
(B) (2 – u2)3 – 1
(C) (2 – u2)3
(D) –2u (2 – u2)3

B11pd1UZU8uN9skkBUNC0hqrrF35ohReIk-Um6kzkl3

tyNgRpSL15fh2O9KajCq5SpZwH2UUr3D82Pi_dEf

B12. If x = 4 cos θ and y = 3 sin θ, then dVNocJuMmZ2Pr4g0FH4s2rYrqiV4hpN6knBCJdM8 is equivalent to 

3ZK2zCmIAasvSOrEVmoiL8UNst4f5-kG2eUHhOv_

B13. A continuous function f takes on the values shown in the table below. Estimate hAf8MU5W8p4aA78NOjdbbTKYV3fOkzj6rJeS_s3V using a left rectangular approximation with five subintervals.

2xh4WVH7D_HRvpDEoHTxNJaUVMueaRTCotoN4mI_

(A) 144
(B) 170
(C) 186
(D) 196

B14. Find the value of x at which the function y = x2 reaches its average value on the interval [0,10].

(A) 5.313
(B) 5.774
(C) 6.083
(D) 18.257

B15. The average value of xYVmRxU3zcFxYdLyJtm3KheYU3jmbBqXL52qCHrv on the interval 0 ≤ x ≤ 5 is

(A) 6.25
(B) 6.41
(C) 9.2
(D) 10

 

Tư vấn miễn phí
PHUONG NAM EDUCATION - HOTLINE: 1900 7060
Để lại số điện thoại
để được Phuong Nam Digital liên hệ tư vấn

Hoặc gọi ngay cho chúng tôi:
1900 7060

Gọi ngay
Zalo chat