357 Lê Hồng Phong, P.2, Q.10, TP.HCM 1900 7060 - 028 3622 8849 info@luyenthitap.edu.vn

Practice Exercises - Applications of Integration to Geometry - AP Calculus Premium 2024

Practice Exercises

1s_sdWgLJsyOzATjxsgDj4_oDtm5ysc6NRtRpUyE

Area

In Questions A1–A11, choose the alternative that gives the area of the region whose boundaries are given.

A1. The curve y = x2, y = 0, x = −1, and x = 2.

M3Ay0i84nh0urfjFENd3_KjS4N99IQxW_D9RURWI

A2. The parabola y = x2 − 3 and the line y = 1.

eYlz6Au-INqql_1BF6eNHPbly4sWDfPiEzzQ72HC

A3. The curve x = y2 − 1 and the y-axis.

4zEjHMXtaNPrQn_gB8tM9cVcwKYd3CSnwI75XR7t

A4

pXnZeTlvk4-Q1YjBjN7LcR1SMtML7Zg6hFzKtN-C

The parabola y2 = x and the line x + y = 2.

A8-falhWz4khCaFzuhsIGR22VegMBHTGy04Uiv5b

A5. The curve u-1-qQrW4d0Cbm-cLNxsXCq7mnVOZ5figRnlz_Do, the x-axis, and the vertical lines x = −2 and x = 2.

MBW1Mx4tvuXoDPMsD5LguEPefkW0gQKCRww_ZxOW

A6

JigCaor1GWxn5NChvESfvBJOB3Xa5g-w9TieOWcD

The parabolas x = y2 − 5y and x = 3yy2.

eJdKbttyDc9SH8WGAYuH3nIazFR3V3a4yOo1hHCU

A7. The curve 8S2p_apBoJJ9SIPlyWn4VBx5oO9vZfSMinXHfdlD and x + y = 3.

2dbTS-kNDyOAbDw0f8jJHY53KEa5-FdYa1SK_mck

A8. In the first quadrant, bounded below by the x-axis and above by the curves of y = sin x and y = cos x.

579sHd8cOFbzMtRlbdews6e1C2Xbevo2h5QvXqzP

A9. Bounded above by the curve y = sin x and below by y = cos x from zvFu3QelCvcdZOUKlb3W6zX4E-LFBR6cwZWS8aR_ to Cci2DntmWHNXzre9XnMHMr94SJvUJNgsIOHv17u3.

2rPH1fjLUelXCSx9Eh96xcAVfbJM5D3CbvUz_lZh

A10. The curve y = cot x, the line Zo_wqA01LEBlGDUoU3eqkQdSaaKa5l7W9mEezmBd, and the x-axis.

yfshehwAeV__-S1OPalrT3R2JvI6Z2BsxSE2XJJ3

A11. The curve y = x3 − 2x2 − 3x and the x-axis.

bhk1rDWrYtsdn-ryaDwM-TEZChzzvHB3UwcEQXj5

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

A12.

 7hd80bJvgrAWM3D1awZUBxIfm744f4-6O17Xb5e9

The total area bounded by the cubic x = y3y and the line x = 3y is equal to

(A) 4
(B) ieqzWP2fHK5t4AlmA-LUo5FvWV6-8op42WBgQ4ks
(C) 8
(D) 16

A13. The area bounded by y = ex, y = 2, and the y-axis is equal to

(A) 3 − e
(B) e2 + 1
(C) 2 ln 2 − 1
(D) 2 ln 2 − 3

CHALLENGE A14. The area enclosed by the curve y2 = x(1 − x) is given by
XbhqUWHQxd6HTEBJft6jpjIaSOTLBOnSgu2Vi_zr

A15. The figure below shows part of the curve y = x3 and a rectangle with two vertices at (0,0) and (c,0). What is the ratio of the area of the rectangle to the shaded part of it above the cubic?

qpkLYiKH0j1ky_GsFD4OmKwLb0HyehPqjYYgBM7c

(A) 3 : 4
(B) 5 : 4
(C) 4 : 3
(D) 3 : 1

Volume

In Questions A16–A22, the region whose boundaries are given is rotated about the line indicated. Choose the alternative that gives the volume of the solid generated.

A16. y = x2, x = 2, and y = 0; about the x-axis.

8kBNGI3-JnhpVAAYSoBN0mk5eRPvQdOSu47idmAi

A17y = x2, x = 2, and y = 0; about the y-axis.
GbEk5CAz8BgJNxh-0xBA9R3MqxH6CPwt8ulXj8Ai

A18. The first-quadrant region bounded by y = x2, the y-axis, and y = 4; about the y-axis.

wah5SSqt_10ISPiZ_YHvJxAcPxQTuCEfswSf6hiU

A19. y = x2 and y = 4; about the x-axis.

XBsLD2oz1wmhPaLpw-8kzIx1sfM8cKTQVQJsBBNH

A20. y = x2 and y = 4; about the line y = 4.

QY0vU75LpCy1wZs8g7trK5tfjltsO7pSOqxhHS82

CHALLENGE A21. An arch of y = sin x and the x-axis; about the x-axis.
Xq-lVq_pUp8152YiNlbB0NQIj3_h3gMtI4l9qf0l

A22. A trapezoid with vertices at (2,0), (2,2), (4,0), and (4,4); about the x-axis.

5t0WEyA15rq5P2eUF5-YXc3a3xscfxQUfipfwr6n

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

A23. The base of a solid is a circle of radius a and is centered at the origin. Each cross section perpendicular to the x-axis is a square. The solid has volume

7Sfy9bvrRBObEuyoA-mhr6xOvxFCXLzBAlbbBeTY

A24. The base of a solid is the region bounded by the parabola x2 = 8y and the line y = 4, and each plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is

CEsdXStOvexXH5WesrdRUuD_llRWfMcKt3-Gdkeo

A25. The base of a solid is the region bounded by y = e−x, the x-axis, the y-axis, and the line x = 1. Each cross section perpendicular to the x-axis is a square. The volume of the solid is

Vims1GQg00l4qa24NbO7gf-e_jiCtLVqGpozDcTn

*Length of Curve (Arc Length)

CHALLENGE *A26.

7yZw_igvZc_0M-1evHBtp0UNciRNcR3GwOzBahE4

The length of the curve y2 = x3 cut off by the line x = 4 is
No2LtbJs8xS8_WUPXh0V6ljhkbylD-8UCVyOoE3a

*A27. The length of the curve y = ln (cos x) from P9FalsIHBMjWkeZL7EoJt59h6dg04mT9ljOAut44 to i3jZp4UdlJXGtK--ps-EsNkRSkEnhLV04i_SfnfO equals

lxnl5gwZPDmEcQLNZJcB0iRMZSikSgbbx4wvn4Go

Improper Integrals

*A28PR3dRRI0hrqrj04xiDq3rkNAJCZgx59zDjk1BEIB

(A) 1
(B) V0RCGv3TVP50TmRY5QEAZhOEXrNwtHRCIl100i-N
(C) −1
(D) divergent

*A291HJqitVGOcBZ15FKQZeJmw-jKUJJjsnlZlxTdiMH

(A) 1
(B) V0RCGv3TVP50TmRY5QEAZhOEXrNwtHRCIl100i-N
(C) 
_UFM-c7jqhzAmipBBTBGChs7hgTWLmzRJGmp9-YV
(D) divergent

*A30JCiyfgRyePLF1e8Ign6wXiRc6zl-dRX26Ndw0O13
m_i6I8G1O1uw5h6HgaK4fAuPIaAKv7hvX7s-R81F

*A31TNRbUhR7K6HhtRJbI4zSvreeKtgay2cL8SGZCIHA

(A) 6
(B) 0
(C) WRWUCMYttqMqQ14mqvwJ_LQ2NyYCe23VRG4oUAub
(D) divergent

*A32gS4sOnC1nHDfuDFWKlN8F8ZqpL1fPfKdXCwXfJq8

(A) 2
(B) −2
(C) 0
(D) divergent

*A33QM93fV56mLSOBQincQLRgPciYteADcoHhOvghfsj

(A) −2
(B) z4klRRgSv-ODo1UI9XYI_x_9rHNc2la7J62e_38f
(C) 2
(D) divergent

*A34. Find the area in the first quadrant under the curve y = e−x.

(A) 1
(B) e
(C) ISY-nJtkPHDq2eZQseBH3uTvgWKjV3XjKUcgWZ11
(D) divergent

*A35

uiXyyWmhxZHYKB1nU5J26ZCMluQOHEE2gGz4uvJz

Find the area in the first quadrant under the curve Rs3Nbfwljt-1N2rhUy2XOBhjWnK2cpABBWYAcUlE.
6Dsn2J09Chiloqbt_uq71kIVtkagW0Ouw3Dgtz2V

*A36. Find the area in the first quadrant above y = 1, between the y-axis and the curve lvdoxk4K9FtB9segA0bMYkHf0LVEUONXJzbZi1Jk.

(A) 1
(B) 2
(C) uz6thXu0r6IG65barHtuwmiBEKN9goj0kfD5izl3
(D) divergent

*A37.

5pZR4tcQnlhyg8nElv9zQfm3BWEKXwHTW2gZfyF7

Find the area between the curve BauLjaIUUdbAEtlwO9ZsdtkdccxKPd9EmzdOel1R and the x-axis.

(A) 2π
(B) 4π
(C) 8π
(D) divergent

*A38.

3cAgL3Skext4tVK7_oG9YSKpLbVe_cwLrxaQ541x

Find the area above the x-axis, between the curve uzLHXc3jz_FfVZMZfRyCv68xrgGlzVXGv6tVNotb and its asymptotes.

(A) π
(B) 2π
(C) 4π
(D) divergent

*A39. Find the volume of the solid generated when the region bounded above by IS23kRA7T_rq6P-b0QCJyYN6-6fZaAjrC5UC3aTi, at the left by x = 1, and below by y = 0 is rotated about the x-axis.

(A) 9-v5Y7bbP9AYxbSpuyfxFiiIs_O7GcBucT96U8Oq
(B) π
(C) 2π
(D) divergent

*A40. Find the volume of the solid generated when the first-quadrant region under y = e−x is rotated about the x-axis.

(A) 9-v5Y7bbP9AYxbSpuyfxFiiIs_O7GcBucT96U8Oq
(B) π
(C) 2π
(D) divergent

yNGEn69EYDqycouAApM1UxaNbYO5zNBvdqezLeM7

Area

In Questions B1–B4, choose the alternative that gives the area of the region whose boundaries are given.

B1.The area bounded by the parabola y = 2 − x2 and the line y = x − 4 is given by

cVfYTFvaSBTAr3LeRu2i414igLnwqu4H96fivVyJ

B2. Suppose the following is a table of coordinates for y = f(x), given that f is continuous on [1,8]

ylgtXoyJB1-OV8J9mFkaiziCLshZwTWtVAWFWcXv

If a trapezoidal sum in used, with n = 4, then the approximate area under the curve, from x = 1 to x = 8, to two decimal places, is

(A) 24.87
(B) 39.57
(C) 49.74
(D) 59.91

*B3. The area A enclosed by the four-leaved rose r = cos 2θ equals, to three decimal places,

(A) 0.785
(B) 1.571
(C) 3.142
(D) 6.283

*B4. The area bounded by the small loop of the limaçon r = 1 − 2 sin θ is given by the definite integral

MQJM0Ws5BG8ZEIL-oFY_YFn4-JDnPnNvM7kvDUrH

Volume

In Questions B5–B10, the region whose boundaries are given is rotated about the line indicated. Choose the alternative that gives the volume of the solid generated.

B5. y = x2 and y = 4; about the line y = −1.

eF9EMAZHMsyT8NKExRpE56UQ-8jZbaGIMo9XpiP2

B6y = 3x x2 and y = 0; about the x-axis.

KROHyPHixIQ8yDKzEHnQz6QY94DDSdtFl4x2KGlr

B7. y = 3xx2 and y = x; about the x-axis.

vyacoqghGW8tBlqs-lkwQlR9eLxcEQ7FfOBxkGEz

B8. y = ln x, y = 0, x = e; about the line x = e.

2NtzE_5Auk-Uw9Whzb3qHwt3y4wdNLm0mrS2B4Qw

CHALLENGE B9. A sphere of radius r is divided into two parts by a plane at distance h (0 < h < r) from the center. The volume of the smaller part equals
y2ZmloErYANn973vwrVbjDxvhmzqdFeXfB-gjnAz

B10. If the curves of f(x) and g (x) intersect for x = a and x = b and if f(x) > g (x) > 0 for all x on (a,b), then the volume obtained when the region bounded by the curves is rotated about the x-axis is equal to

ZjO2VgvlxEjaMVE0qRmiSRPtWjqaHOON2rdUS6MU

QQjVxNRaT4IGUuoZ0bEbw5pB1LFN63vZ0sIniTbk

Length of Curve (Arc Length)

*B11. The length of one arch of the cycloid 6NLMJdGen7U0qSzr3v9pY0guKKv0Ge_YkveKXXX7 equals

fxKVfYFApl6ezxbnQBfKrO7avrQuorBkMmboFSgJ

*B12. The length of the curve of the parabola 4x = y2 cut off by the line x = 2 is given by the integral

QIH46OjT4LkFZTuANBo1CFrAvpEg9IqGsVHTM4-S

*B13. The length of x = et cos t, y = et sin t from t = 2 to t = 3 is equal to

(A) 17.956
(B) 25.393
(C) 26.413
(D) 37.354

Improper Integrals

*B14. Which one of the following is an improper integral?
oO7BIYdbV5nKj6e0YVNaNzCFgSPd0EpWTKkezp4_

*B15. Which one of the following improper integrals diverges?
Y8FAN0552kUVbCzxgoos62MdBBGyfNIEQiz-sv3c

*B16. Which one of the following improper integrals diverges?

GKCjVrlMwbL6_J3-PPukndykFoidV4YigOuGhHRZ

Tư vấn miễn phí
PHUONG NAM EDUCATION - HOTLINE: 1900 7060
Để lại số điện thoại
để được Phuong Nam Digital liên hệ tư vấn

Hoặc gọi ngay cho chúng tôi:
1900 7060

Gọi ngay
Zalo chat